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Unless otherwise specified, k is an algebraically closed field.

Exercise 3.1.

1. Show that V (Y −X2) ⊂ A2(C) is irreducible; in fact, I(V (Y −X2)) = (Y −X2).

2. Decompose V (Y 4 −X2, Y 4 −X2Y 2 +XY 2 −X3) ⊂ A2(C) into irreducible components.

3. Show that F = Y 2 +X2(X − 1)2 ∈ R[X,Y ] is an irreducible polynomial, but V (F ) is reducible.

Solution 1.

1. I is prime ideal implies that V (I) is irreducible. Now I = (Y − X2) is prime because C[X,Y ]/I ≃ C[X] is

integral.

2. Let V := V (Y 4 −X2, Y 4 −X2Y 2 +XY 2 −X3). We can see that

Y 4 −X2 = (Y 2 +X)(Y 2 −X)

and

Y 4 −X2Y 2 +XY 2 −X3 = (Y 2 +X)(Y 2 −X2)

We see that Y 2 + X is a common irreducible factor so it is an irreducible component of dimension 1 in V .

There are two other irreducible components given by points (1, 1) and (1,−1) in the intersection of V (Y 2−X)

and V (Y 2 −X2) = V ((Y −X)(Y +X)). (Note that (0, 0) is already contained in V (Y 2 +X))

3. In C[X,Y ],

F = (Y − iX(X − 1))(Y + iX(X − 1))

By unicity of the decomposition in irreducible factors and as i /∈ R, F is irreducible in R[X,Y ]. However,

V (F ) = V (Y −X(X − 1)) ∪ V (Y +X(X − 1))

Exercise 3.2.
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1. Consider the twisted cubic curve C = {(t, t2, t3); t ∈ C} ⊂ A3(C). Show that C is an irreducible closed subset

of A3(C). Find generators for the ideal I(C).

2. Let V = V (X2−Y Z,XZ−X) ⊂ A3(C). Show that V consists of three irreducible components and determine

the corresponding prime ideals.

Solution 2.

1. We have a continuous map surjecting on the twisted cubic curve.

f : A1(C) −→ A3(C)
t 7→ (t, t2, t3)

If C = F1∪F2, with F1 and F2 Zariski closed subsets, A1 = f−1(F1)∪f−1(F2). A1(C) is Zariski-irreducible so
without lost of generality f−1(F1) = A1(C) but then C = F1. Hence C is irreducible. Moreover C is defined

by the ideal

I(C) = (Z −X3, Y −X2)

so it is closed.

2. We can decompose

V (X2 − Y Z,XZ −X) = V (X2 − Y Z,X(Z − 1))

V = V1 ∪ L2 ∪ L3

where V1 = V (Z − 1, X2 − Y ) is an irreducible curve, L2 = V (X,Y ) and L3 = V (X,Z) are lines.

Exercise 3.3. For topological spaces X and Y , the opens of the product topology on X×Y are unions of products

of opens U × V , where U ⊆ X and V ⊆ Y . A topological space X is called Hausdorff if for any pair of points

x1 ̸= x2 ∈ X, there exist open subsets U, V ⊆ X such that x1 ∈ U , x2 ∈ V and U ∩ V = ∅. A topological space G

with an abstract group structure is called a topological group if the multiplication and inverse laws are continuous.

Let n ≥ 1.

1. Is the product topology on A1
k × A1

k (each copy of A1
k being endowed with the Zariski topology) the same as

the Zariski topology on A2
k?

2. Is the Zariski topology on An
k Hausdorff?

3. Is (An
k ,+) a topological group for the Zariski topology (assuming An

k ×An
k ≃ A2n

k is endowed with the Zariski

topology)?

Solution 3.

1. No. For example, V (1−XY ) is a Zariski closed subset in A2
k but it is not closed in the product topology (it

is not a countable union of points or of products of points with A1).

2. No. Since any two open sets are dense in An
k , their intersection cannot be empty.
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3. Yes. Since (x, y)→ x+ y and x→ −x are algebraic (i.e. given by polynomials), it is continous for the Zariski

topology.

Exercise 3.4.

1. Show that any (correction : non empty) open subset of an irreducible topological space is irreducible and

dense.

2. Show that the closure of an irreducible subset of a topological space is irreducible.

Solution 4. Recall that in general, S topological set irreducible if for allW1,W2 closed in S, S = W1∪W2 ⇒ S = W1

or S = W2.

1. Let U ⊂ F open in F irreducible. Then F = F \ U ∪ U so F = F \ U or F = U , thus U = ∅ or U is dense in

F .

Let W1,W2 closed in U such that U = W1∪W2 and U irreducible. Taking closure, U = W1∪W2. Without lost

of generality, U = W1. Now U \W1 is open in U , so it is dense or empty. If it is dense, then W ⊂W = U \W
so that W ⊂ U \ U , contradiction. So U \W1 is empty and U = W1.

2. Similar argument.

Exercise 3.5. Let V an affine variety. Show that algebraic subsets of V are in one-to-one correspondence with

radical ideals of Γ(V ). Show that under this correspondence, affine subvarieties correspond to prime ideals and

points correspond to maximal ideals.

Solution 5. We have two maps

{Algebraic sets} −→ {Radical ideals}

V 7→ I(V )

V (I)← I

I(V ) is radical, the map is well-defined. Let’s verify that both maps are inverse of each other, i.e. I(V (I)) = I.

I ⊂ I(V (I)) is clear. I(V (I)) = Rad(I) is the content of Hilbert Nullstellensatz. As I is radical, I(V (I)) = I.

Suppose I is prime. Then if V (I) = V1 ∪ V2 algebraic sets, then V (I) = V (I(V1)) ∪ V (I(V2)) so I(V1)I(V2) ⊂ I. I

is prime so without lost of generality I(V1) = I and V (I) = V1. In turn, V (I) is irreducible.

Suppose I is maximal. As I ⊂ J implies V (J) ⊂ V (I), I maximal implies that V (I) does not have proper algebraic

subset, so it is a point.

Arguments for converses statements are similar.

3


